Short introduction on Norway’s emissions

Although CO2 is the driving force behind the temperature changes, other gases such as methane (CH4) also contribute their share to global warming, for example through the exploitation of gas fields, and emissions by livestock. While methane is emitted much less than CO2 on a global scale, it is a much stronger greenhouse gas (GHG). Scientists estimated the relative strength of the important Kyoto greenhouse gases so that we can convert all emissions to an equivalent of CO2 emissions. For example, the emission of one ton of methane has approximately the warming effect of 25 tons of CO2. The factor of 25 reflects the climate forcing on a 100-year time horizon, following the Global Warming Potential presented in the IPCC Fourth Assessment Report (AR4).

With greenhouse gas emissions of approximately the equivalent of 53.7 mega tonnes of CO2 (Mt CO2eq), Norway contributed 0.11% to the global greenhouse gas emissions of 2017 (rank 83 - incl. EU27 on rank 3). All emissions estimates exclude emissions and absorption from land, which result from activities such as cutting down or planting of forests (Land Use, Land-Use Change and Forestry: LULUCF). Emissions from bunker fuels (international aviation and shipping) were also excluded, as they are not accounted for in national totals.

For 2030, Norway’s global contribution to greenhouse gas emissions is projected to stay at a similar level of approximately 0.10% (61.1 mega tonnes of CO2 equivalent / rank 85 - incl. EU27 on rank 4). The emissions projections for Norway were derived by downscaling the Shared Socio-Economic Pathways’ (SSPs) “Middle-of-the-Road” baseline marker scenario SSP2. These pathways describe certain narratives of socio-economic developments and were, i.a., used to derive greenhouse gas emissions scenarios that correspond to these developments. SSP2 is a narrative with little shifts in socio-economic patterns compared to historical ones, and is connected to medium socio-economic challenges for both climate mitigation and adaptation. While different models were used for each storyline, per SSP (SSPs1-5) one model was chosen as representative “marker scenario”. As the emissions projections are not readily available on country-level, but national estimates are important, the pathways were downscaled in the aftermath. In 2017, Norway represented 0.070% of the global population. Its Gross Domestic Product (GDP) in 2017 were 0.26% of the global GDP.

Looking at the highest contributing emissions sectors and gases separately, we find that in 2017 the highest contributing emissions sectors were Energy and IPPU (71.5% and 17.5%). Amongst the greenhouse gases that are considered in the Kyoto Protocol, the strongest contributor with 82.8% was CO2. This was followed by CH4 emissions, with a significantly lower share of 9.4%. When not considering the sectors and gases independently, but the sector-gas combinations instead, Energy CO2 and IPPU CO2 (68.7% and 13.9%) represented the largest emissions in 2017.

Greenhouse gas mitigation and Nationally Determined Contribution (NDC)

In 2015, the majority of countries agreed to the Paris Agreement (PA), with the goal of “Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change” (Article 2.1.a). Countries stated their pledges and targets towards achieving the PA’s goals in their Nationally Determined Contributions (NDCs). With Article 4.4 of the Paris Agreement, Parties decided that “Developed country Parties should continue taking the lead by undertaking economy-wide absolute emission reduction targets. Developing country Parties should continue enhancing their mitigation efforts, and are encouraged to move over time towards economy-wide emission reduction or limitation targets in the light of different national circumstances.”

In its NDC, the country communicates that “Norway is committed to a target by at least 50% and towards 55% reduction in greenhouse gas emission compared to 1990 levels. Norway seeks to fulfil the enhanced ambition through the climate cooperation with the European Union. In the event that Norway’s enhanced nationally determined contribution goes beyond the target set in the updated nationally determined contribution of the European Union, Norway intends to use voluntary cooperation under Article 6 of the Paris Agreement to fulfil the part that goes beyond what is fulfilled through the climate cooperation with the European Union. Consent of the Parliament will be required” (NDC, p. 3). Even though not stated, we expect this contribution to be unconditional on, e.g., international financial support or technology transfer.

For the base year 1990, Norway states a reference level of about 52 MtCO2eq, excluding LULUCF (NDC, p. 3). In its updated 2020 NDC, the country indicates that “Global warming potentials (GWP) for a 100 year time horizon from the IPCCs fifth Assessment Report will be used to calculate CO2 equivalents.” (NDC, p. 12). However, this does not seem to apply to the current emissions estimates yet. Based on Norway’s previous NDC (NDC2016, p. 3), we assume the given 52 MtCO2eq to follow GWPs from the IPCC AR4. A 50-55% reduction of Norways 1990 emissions can be translated into 2030 target emissions that would amount to 23.4-26 MtCO2eq AR4 (exclLU). The availability of national estimates of emissions mitigation targets and pathways in line with countries’ NDCs is of great importance when, e.g., aggregating to global emissions to then derive, i.a., the resulting end-of-century warming levels.

The target is described as “economy-wide” (NDC, p. 5), and all main IPCC emissions sectors (“Energy, industrial processes and product use, agriculture, land-use, land-use change and forestry, and waste.”, NDC, p. 5) are explicitly stated as covered. Additionally, Norway mentions that “For the land-use, land-use change and forestry sector, emissions and removals the following reporting categories are included: forest land, cropland, grassland, and wetland (wetland remaining wetland only from 2026), including land use changes between the categories, and between these categories and settlements and other land. The five carbon pools above-ground biomass, below-ground biomass, litter, dead wood and soil organic matters are included. In addition, the carbon pool harvested wood products is included.” (NDC, p. 5). Also, the country states that “The Land Use, Land-Use Change and Forestry (LULUCF) Regulation regulates emissions and removals for the land use, land use change and forestry sector. As for the EU Member States, Norway’s commitment is to ensure that emissions do not exceed removals in this sector.” (NDC, p. 7). Nevertheless, the country clarifies that “The reference indicator will be quantified based on national total greenhouse gas (GHG) emissions, except LULUCF in the base year 1990 reported in Norway’s National Inventory Report (NIR).”, why we decided to classify the 50-55% reduction and target emissions as excluding LULUCF. All seven Kyoto GHGs are listed as covered (NDC, p. 5). In total, this results in 100% of Norway’s emissions excluding LULUCF being targeted by the NDC.

The NDC-assessment is based on Norway’s NDC submitted to the UNFCCC in February 2020.

The Figure below provides additional information, regarding both the baseline emissions used in our assessment and the quantified mitigated pathways for Norway.

Baseline emissions and mitigated emissions pathways based on the country’s Nationally Determined Contribution. In terms of national emissions, we look at the SSP2 baseline marker scenario, and the emissions of all IPCC sectors. Contributions from LULUCF are excluded (exclLU), and the emissions are based on GWPs from AR4. The left panel (a) shows the baseline emissions, indicating the contributions of the Kyoto Greenhouse Gases CO2, CH4, N2O, and the basket of F-gases to the national emissions. If we could extract baseline data exclLU from the NDC, you can see their values as black squares (converted from GWP SAR to AR4 if needed). In the right panel (b), the quantified mitigated emissions pathways are shown, based on information from the country’s NDC and also on non-NDC emissions baselines, per target conditionality and range (marked un-/conditional best/worst). Even though not all countries have targets with different conditionalities or ranges, we need assumptions for all four cases to build one global pathway per conditionality plus range combination and to derive corresponding temperature estimates. Therefore, we indicate these four pathways here. Per combination, we performed several quantifications with differing assumptions and show the median and the minimal and maximal pathways here. Additionally, if we could quantify the targets based on data extracted purely from the NDC - or if the targets were directly given in absolute emissions, these targets are shown as squares (in the GWP originally given in the NDC).


Data sources and further information

  • Historical emissions: PRIMAP-hist v2.1 (Guetschow et al., 2016, 2019).
  • Historical socio-economic data: PRIMAP-hist Socio-Eco v2.1 (Guetschow et al., 2019).
  • Projected emissions and socio-economic data: downscaled SSPs (Guetschow et al., 2020, 2020).
  • NDC quantifications: NDCmitiQ (Guenther et al., 2020, 2021).
  • GDP is given in purchasing power parity (PPP).
  • Main emissions sectors (Intergovernmental Panel on Climate Change, IPCC): Energy, Industrial Processes and Product Use (IPPU), Agriculture and LULUCF (Land Use, Land-Use Change and Forestry), also named AFOLU (Agriculture, Forestry and Other Land Use), and Waste.
  • Kyoto GHG: basket of several GHGs, namely carbon dioxide (CO2), Methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6), and since the second Kyoto Protocol period (2013-20) additionally nitrogen fluoride (NF3).
  • Global Warming Potentials (GWPs): GHGs have very different warming potentials. To make them comparable and for aggregation purposes, GWPs are used (how much energy will 1 ton of a certain gas absorb over a defined period of time, relative to the same mass of CO2?).


1 Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany